Гетерозиготный и гомозиготный

Содержание

Анализ полиморфизмов в генах F2, F5, F7, F13, FGB, PAI-1, ITGA2, ITGB3 (риск развития тромбофилии) и MTHFR, MTRR, MTR (нарушения метаболизма фолатов)

Комплексное генетическое исследование риска развития тромбофилии и нарушения фолатного цикла.
Наличие генетической предрасположенности к тромбофилии сопряжено с повышенным риском развития осложнений беременности: привычное невынашивание, плацентарная недостаточность, задержка роста плода, поздний токсикоз. Полиморфизмы генов F2, F5, F7, F13, FGB, PAI-1, ITGA2, ITGB3 и MTHFR, MTRR, MTR также могут являться причиной развития венозных тромбозов.
Тромбофилия
Тромбофилия — патологическое изменение в свёртывающей системе крови, приводящие к образованию кровяных сгустков.
Тромбофилия может быть наследственной и приобретённой. Приобретённые тромбофилии могут возникнуть во время беременности или при ожирении. Появление тромбофилий может быть обусловлено внешними причинами: хирургическими операциями, использованием гормональных контрацептивов, антифосфолипидным синдромом, повышением уровня гомоцистеина, курением или долгим периодом неподвижности. При наследственных тромбофилиях происходят изменения в генах, ответственных за поддержание гемостаза.
Наиболее частыми из известных генетических факторов, предрасполагающих к тромбозам, являются полиморфизмы в генах факторов свёртывания крови F2 (c.*97G>A) и F5 (c. 1601G>A), и полиморфизмы в генах фолатного цикла (метилентетрагидрофолат-редуктаза, MTHFR; метионин-синтаза редуктаза, MTRR; метионин-синтаза, MTR). Полиморфизмы в генах факторов F2 и F5 вносят больший вклад в риск развития тромбофилий и имеют самостоятельное клиническое значение. Одновременное выявление нескольких генетических факторов предрасположенности к тромбофилическим состояниям значительно увеличивает риск развития тромбозов.
Тромбозы — наиболее частое проявление тромбофилии
При тромбозах в сосудах образуются тромбы, которые блокируют кровоток. Она может приводить к развитию артериальных и венозных тромбозов, которые в свою очередь зачастую являются причиной инфаркта миокарда, ишемической болезни сердца, инсульта, тромбоэмболии лёгочной артерии и др. Повышенная склонность к тромбообразованию — наиболее частое проявление тромбофилии.
Ген F2
Ген F2 кодирует аминокислотную последовательность белка протромбина. Протромбин или коагуляционный фактор II является одним из главных компонентов свёртывающей системы крови. В результате его ферментативного расщепления образуется тромбин. Данная реакция является первой стадией образования кровяного сгустка.
Полиморфизм гена F2 (20210 G-> A) обусловлен заменой нуклеотидного основания гуанина (G) на аденин (A) в позиции 20210 гена, приводит в случае варианта А к повышенной экспрессии гена. Избыточная продукция протромбина является фактором риска инфаркта миокарда, различных тромбозов, в том числе тромбоэмболии лёгочной артерии, часто имеющей смертельный исход. Неблагоприятный вариант полиморфизма (А) наследуется по аутосомно-доминантному типу. Это означает, что повышенный риск тромбофилии имеет место даже при гетерозиготной форме полиморфизма.
Ген F5
Ген F5 кодирует аминокислотную последовательность белка — коагуляционного фактора V (фактор Лейдена). Функция коагуляционного фактора V заключается в активизации реакции образования тромбина из протромбина.
Полиморфизм (1691 G-> A (R506Q)) гена F5 обусловлен заменой нуклеотидного основания гуанина (G) на аденин (A) в положении 1691, что приводит к аминокислотной замене аргинина на глутамин в позиции 506. Замена аминокислоты придаёт устойчивость активной форме фактора Лейдена к расщепляющему действию регулирующего фермента, что приводит к гиперкоагуляции (повышенной свёртываемости) крови. Носители варианта А обладают повышенной склонностью к развитию сосудистых тромбозов, являющихся фактором риска венозных и артериальных тромбоэмболий, инфаркта миокарда и инсульта. Наличие данного варианта полиморфизма несёт серьёзную опасность для беременных, повышает вероятность развития целого ряда осложнений беременности: выкидыша на ранних сроках, отставания развития плода, позднего токсикоза, фетоплацентарной недостаточности и др.
Ген F7
Ген F7 кодирует коагуляционный фактор, который участвует в образовании кровяного сгустка. Вариант 353Gln (10976A) приводит к понижению производительности (экспрессии) гена фактора VII и является защитным фактором в развитии тромбозов и инфаркта миокарда. При исследовании пациентов со стенозом коронарных артерий и инфарктом миокарда обнаружено, что наличие мутации 10976A приводит к понижению уровня фактора VII в крови на 30% и 2-х кратному понижению риска инфаркта миокарда даже при наличии заметного коронарного атеросклероза. В группе пациентов, не имевших инфаркта миокарда, наблюдалась повышенная встречаемость гетеро- и гомозиготных генотипов 10976A, соответственно G/A и G/G.
Ген F13
Ген F13 кодирует фактор XIII. Это фибринстабилизирующий фактор, или фибриназа участвует в образовании нерастворимого фибрина, представляющего собой основу кровяного сгустка, или тромба. Тромбы, образовавшиеся в присутствии фибриназы, очень медленно подвергаются лизису. Повышение активности фактора XIII сопровождается увеличением адгезивности и агрегации кровяных пластинок. У больных с тромбоэмболическими осложнениями активность фибриназы повышена.
Мутация 134Leu наблюдается у 51% женщин с привычным невынашиванием беременности. Риск привычного невынашивания беременности еще выше у лиц — носителей мутации 134Leu в сочетании с мутацией 5G/4G в гене PAI-1.
PAI-1
Ген РАI1 кодирует ингибитор активатора плазминогена — I типа SERPINE1. РАI1 является компонентом противосвёртывающей системы крови. Мутации 5G/4G и 4G/4G приводит к его сверхпродукции. В результате увеличивается риск тромбозов. Гомозиготная мутация 4G/4G является фактором риска для развития тромбозов, в том числе тромбозом портальной вены и тромбозом внутренних органов, и инфаркта миокарда, семейной предрасположенности к ИБС. Также приводит к таким осложнениям беременности, как тяжёлый гестоз (у носительниц генотипа 5G/4G риск увеличивается в 2 раза, а у женщин с генотипом 4G/4G в 4 раза), остановки развития на малых сроках, внутриутробная гибель плода, гипотрофия и задержка внутриутробного развития, хроническая внутриутробная гипоксия плода, преждевременное созревание плаценты.
Назначение специальной профилактики во время беременности: низкодозированная ацетилсалициловая кислота и малые дозы препаратов гепарина позволяет практически полностью устранить риск осложнений беременности у женщин с генотипами 5G/4G и 4G/4G.
Ген ITGB3
Ген ITGB3 кодирует аминокислотную последовательность белковой молекулы тромбоцитарного рецептора фибриногена. Данный рецептор обеспечивает взаимодействие тромбоцитов с фибриногеном плазмы крови, в результате чего происходит агрегация тромбоцитов и образование тромба.
Ген ITGА2
Ген ITGA2 кодирует аминокислотную последовательность a2-субъединицы интегринов — специализированных рецепторов тромбоцитов, за счёт которых происходит взаимодействие тромбоцитов с тканевыми белками, обнажаемыми при повреждении стенки сосудов. Благодаря интегринам тромбоциты образуют монослой в области повреждённых тканей, что является необходимым условием включения последующих звеньев свёртывающей системы крови, предохраняющей организм от кровопотери.
Ген FGB
Ген FGB кодирует аминокислотную последовательность бета-цепи фибриногена. Фибриноген занимает одно из главных мест в свёртывающей системе крови. Из фибриногена образуется фибрин — основной компонент кровяного сгустка.
Нарушения фолатного цикла
Ген MTHFR
Ген MTHFR кодирует аминокислотную последовательность фермента метаболизма гомоцистеина. Гомоцистеин — продукт метаболизма метионина — одной из 8 незаменимых аминокислот организма. Он обладает выраженным токсическим действием на клетку. Циркулируя в крови, гомоцистеин повреждает сосуды, тем самым повышая свёртываемость крови и образование микротромбов в сосудах. Снижение активности метилентетрагидрофолатредуктазы — одна из важных причин накопления гомоцистеина в крови.
Дефицит МТГФР приводит к снижению метилирования ДНК, что приводит к активации многих клеточных генов, в том числе онкогенов. В случае сниженной активности МТГФР во время беременности усиливается влияние тератогенных и мутагенных факторов внешней среды.
Известно около десяти вариантов гена MTHFR, влияющих на функцию фермента. Наиболее изучен полиморфизм 677 C->T (A223V).
Полиморфизм 677 C->T (A223V) связан с заменой в позиции 677 нуклеотида цитозина (С) на тимин (Т). Это приводит к замене аминокислотного остатка аланина на валин в позиции 223, относящейся к участку молекулы фермента, ответственному за связывание фолиевой кислоты. У лиц, гомозиготных по данному варианту (генотип Т/Т) фермент МТГФР проявляет чувствительность к температуре и теряет свою активность примерно на 65%. Вариант Т связан с четырьмя группами многофакторных заболеваний: сердечно-сосудистыми, дефектами развития плода, колоректальной аденомой и раком молочной железы и яичников. У женщин с генотипом Т/Т во время беременности, дефицит фолиевой кислоты может приводить к дефектам развития плода, в том числе, незаращению нервной трубки. У носителей этого генотипа высок риск развития побочных эффектов при приёме некоторых лекарственных препаратов, используемых в раковой химиотерапии, например, метотрексата. Неблагоприятное воздействие варианта Т полиморфизма сильно зависит от внешних факторов — низкого содержания в пище фолатов, курения, приема алкоголя. Сочетание генотипа Т/Т и папилломавирусной инфекции увеличивает риск цервикальной дисплазии. Назначение фолиевой кислоты может значительно снизить риск последствий данного варианта полиморфизма.
Ген MTRR
Ген MTRR кодирует цитоплазматический фермент метионин-синтаза-редуктазу (МСР). Фермент играет важную роль в синтезе белка и участвует в большом количестве биохимических реакций, связанных с переносом метильной группы. Одной из функций МСР является обратное превращение гомоцистеина в метионин.
Ген MTR
Ген MTR кодирует цитоплазматический фермент метионин-синтазу (альтернативное название — 5-метилтетрагидрофолат-гомоцистеин S-метилтрансфераза). Катализирует повторное метилирование гомоцистеина с образованием метионина, в качестве кофактора выступает кобаламин (предшественник витамина В12).
Показания:

  • женщинам с первым эпизодом ВТЭ, возникшим во время беременности, в послеродовом периоде, или во время приёма оральных контрацептивов;
  • женщинам с необъяснимой внутриутробной гибелью плода во время второго или третьего триместра беременности;
  • женщинам с первым эпизодом ВТЭ, получающим заместительную гормональную терапию;
  • пациентам, имеющим в анамнезе повторные случаи венозных тромбоэмболий (ВТЭ);
  • пациентам с первым эпизодом ВТЭ в возрасте до 50 лет;
  • пациентам с первым эпизодом ВТЭ при отсутствии средовых факторов риска в любом возрасте;
  • пациентам с первым эпизодом ВТЭ необычной анатомической локализации (мозговых, брыжеечных, печеночных вен, портальной вены и т.д.);
  • пациентам с первым эпизодом ВТЭ в любом возрасте, имеющих родственников первой степени родства (родители, дети, сибсы) с тромбозами до 50 лет.

Подготовка
Генетическое обследование не требует специальной подготовки. Рекомендуется взятие крови не ранее чем через 4 часа после последнего приёма пищи.
Перед диагностикой не рекомендуется подвергать себя стрессовым ситуациям, принимать спиртные напитки и курить.
Рацион и приём лекарственных препаратов не влияет на результат исследования.
Интерпретация результатов
Для интерпретации результатов генетического тестирования требуется консультация врача-генетика.

Изучение генной наследственности, закономерности и изменчивости организмов, относится к науке, именуемой – генетика. Первооткрывателем в области генетических исследований, стал Грегор Иоганн Мендель, австрийский ботаник и биолог.

Он заметил наследственную закономерность, между потомством и родительскими особями – признаки моногенного наследования. В дальнейшем, это открытие приобрело название «Закон Менделя», и заложило основы для развития генетики.

Что такое гомозиготный организм в биологии: определение, свойства

  • Гомозиготными — называются такие организмы, в которых содержаться аллели, состоящие исключительно из регрессивных или доминантных генов. Хромосомы в гомозиготных организмах, имеют одинаковые аллели, символически обозначенные: АА, аа.
  • Данный вид генов, кодирует однотипные признаки в гомозиготном организме. К примеру, окрас лепестков от определенного сорта цветка — получит все дальнейшее его потомство, с сохранением фенотипических явлений и генотипа данного растения.

Гомозиготные организмы обладают такими свойствами:

  1. В момент соединения подобных организмов, разделение потомства по определенному признаку не прослеживается.
  2. Формируют по выбранному гену, однотипные гаметы.

Различия

Что такое гетерозиготный организм в биологии: определение, свойства

  • Гетерозиготным – считается организм, в котором аллели, кодирующие различные признаки, содержат два типа генов: регрессивный и доминантный ген. Имеет символическое изображение: Аа или Bb.
  • У гетерозиготных форм жизни, фенотип одинаковый, обусловленный доминантным геном. Например: А – темные волосы, а – светлые волосы, потомство с генотипом Аа — будет темноволосым. В этом примере аллель А является — доминантная, а – рецессивная аллель.

К свойствам гетерозиготных организмов можно отнести:

  1. Разделение и перераспределение признаков аллелей, по установленному числовому соотношению у потомственных гетерозиготных особей, по признаку генотипа — соотношение 1:2:1, а по признакам фенотипа – 3:1.
  2. Развитие двух видов гамет.

Что такое доминантные и рецессивные гены?

Любой клеточный организм состоит из определенного набора хромосом, включающих в свой состав парное количество хроматидов, разделяемых на гены.

  • Аллельные гены – это однотипные гены с разными формами, размещенные в одном и том же хромосоме. Данные гены, сформированы из пары, отцовской и материнской аллели. В свою очередь, аллели подразделяются на рецессивную и доминантную форму. Главный признак, который будет проявляться в фенотипе, определяет доминантная аллель.
  • Рецессивная аллель – выполняет вторичные наследственные признаки и не является основополагающей. Доминантный ген всегда ограничивает проявление рецессивного гена. Однако если имеется пара рецессивных видов в одном локусе гомологичных хромосом – это может оказать влияние и внедрить в организм признак или дефект, принадлежащий данному гену.
  • Схематически аллели изображаются в виде латинских букв. Каждый тип аллелей, имеет свое графическое написание: заглавными буквами обозначены доминантные аллели: АА, ВВ, рецессивные отмечаются маленькими буквами: аа, bb.

У человека

К доминантным признакам человека относятся:

  1. Кудрявые волосы, темный цвет волос, мужское облысение, участки волос с отсутствием пигментации.
  2. Глаза: каре-зеленый, карий или зеленый цвет.
  3. Кожа с нормальной пигментацией.
  4. Дефекты: излишек пальцев на верхних или нижних конечностях, срастание или отсутствие нескольких фаланг пальцев, карликовость с укороченными конечностями.
  5. Отсутствие реакции на яд сумаха.
  6. Хорошая свертываемость крови, положительный резус, 2 и 3 группа крови.

Рецессивными признаками считаются:

  1. Волосы: светлые и рыжие, прямые, женское облысение.
  2. Серые или голубые глаза.
  3. Альбинизм или слабая пигментация кожи.
  4. Хорошее строение пальцев.
  5. Положительная реакция на яд сумаха, немота и отсутствие слуха, куриная слепота, цветовая аномалия, 1 группа крови и гемофилия, отрицательный резус-фактора крови.

Как узнать гетерозиготный или гомозиготный организм?

  • Определить генетический тип организма, можно по совместимости аллелей в паре. Если в паре аллелей, обе имею одинаковый вид АА и ОО, значит данный организм гомозиготного генотипа.
  • При разном подборе аллели АО – организм является гетерозиготным генотипом. Также установлено, что гомозиготные виды АА и ОО предусматривают 2 и 1 группу крови. А для гетерозиготного генотипа АО, характерной будет 2 группа крови по доминантному признаку.
  • Ген О – выполняет свойства рецессивного признака. Из этого следует, что доминантный ген — способен проявить себя в обоих случаях: гетерозиготном и рецессивном состоянии.

Формы

  • Рецессивные гены выделяются лишь в гомозиготном виде, при гетерозиготном состоянии отсутствуют. На практике, для определения гетерозиготного и гомозиготного организма, применяется метод анализирующего скрещивания особей. Заключается он в том, чтобы доминантный генотип, скрестить с гомозиготным генотипом по рецессивному признаку.
  • Отсутствие расщепления в потомстве – расскажет о доминантном виде особи. В противном случае расщепление в пропорциях 1:1 говорит о гетерозиготном признаке организма.

Что такое неполная гомозигота: кодоминантность и неполное доминирование?

  • Имеются такие аллели, где доминантные признаки проявляются не в полной мере. Такие изменения принято называть кодоминантные признаки. Они сочетают в себе оба родительских признаков. При скрещивании разных по цвету соцветий, можно получить смешанный тип – это и будет проявление эффекта кодоминантности признака.
  • Ученый Мендель в своих опытах обнаружил, что иногда потомство имеет промежуточные характеристики, свойственные гибридам. Такие особи, не имеют ярко выраженных доминантных и рецессивных признаков. Это явление также известно, как неполное доминирование.

Неполное

  • Данный вид наследственности, определяется тем, что в нем доминантный ген имеет не такое агрессивное воздействие на рецессивный ген, его вторичные свойства, не до конца угнетены.

Формула гомозигот — гетерозиготный и гомозиготный генотип: примеры

  • Формула диплоидных клеток организма при гомозиготном признаке по аллелям А и а, схематически прописывается так: АА и аа. У триплоидного организма эта формула выглядит таким образом: ААА и ааа.
  • Например, АА, СС, аавв – значения, принадлежащие к гомозиготным особям. Организмы с генетической формулой ААВb и АаВВ – гетерозиготные особи.

К чему приводит преобладание гомозиготных особей?

  • Скрещивание пары гомозиготных организмов, имеющих различие по нескольким альтернативным признакам приводит к наследованию генов и надлежащих им признаков, вне зависимости от сочетания формируются всевозможные варианты – подобно моногибридному скрещиванию.
  • Преобладание по фенотипу и всем признакам, отводится потомству в первом поколении. Следующее поколение, будет иметь расщепление в соотношении 9:3:3:1.

В чем отличие гетерозиготных организмов от гомозиготных организмов?

В предоставленной таблице, показаны сравнительные характеристики двух генотипов организма. Указанная информация, позволяет дать краткий анализ по каждому отдельному генотипу и сопоставить их различия между собой.

Характерные признаки Гетерозигота Гомозигота
Аллель гомологичной хромосомы Различные Одинаковые
Проявление рецессивного гена Угнетается Свойственно
Генотип Аа АА, аа
Расщепление Во втором поколении Не совершается
Признак для определения фенотипа Доминантный Рецессивный и доминантный
Однотипность первого поколения Позитивная Присутствует
  • Методика скрещивания гомозиготных и гетерозиготных организмов способствует выведению и развитию новых признаков особей. Селекция и гибридизация помогают приумножить устойчивость организмов к ряду возможных заболеваний.
  • Усиливают сопротивляемость при воздействии негативных факторов окружающей сферы на организм, увеличивают продолжительность жизни и способность к адаптации в новой среде обитания.
  • Организмы с новыми генетическими особенностями дают качественное потомство.
  • Благодаря генетическому скрещиванию, появилось множество разновидностей живых культур в растительной и животноводческой сфере.

Гомозиготность и гетерозиготность

Гомозиготность и гетерозиготность, доминантность и рецессивность.

Гомозиготность (от греч. «гомо» равный, «зигота» оплодотворенная яйцеклетка) диплоидный организм (или клетка), несущий идентичные аллели в гомологичных хромосомах.

Грегором Менделем впервые был установлен факт, свидетельствующий о том, что растения, сходные по внешнему виду, могут резко отличаться по наследственным свойствам. Особи, не дающие расщепления в следующем поколении, получили название гомозиготных. Особи, в потомстве у которых обнаруживается расщепление признаков, назвали гетерозиготными.

Гомозиготность- это состояние наследственного аппарата организма, при котором гомологичные хромосомы имеют одну и ту же форму данного гена. Переход гена в гомозиготное состояние приводит к проявлению в структуре и функции организма (фенотипе) рецессивных аллелей, эффект которых при гетерозиготности подавляется доминантными аллелями. Тестом на гомозиготность служит отсутствие расщепления при определённых видах скрещивания. Гомозиготный организм образует по данному гену только один вид гамет.

Гетерозиготность — это присущее всякому гибридному организму состояние, при котором его гомологичные хромосомы несут разные формы (аллели) того или иного гена или различаются по взаиморасположению генов . Термин «Гетерозиготность» впервые введён английским генетиком У. Бэтсоном в 1902. Гетерозиготность возникает при слиянии разнокачественных по генному или структурному составу гамет в гетерозиготу. Структурная гетерозиготность возникает при хромосомной перестройке одной из гомологичных хромосом, её можно обнаружить в мейозе или митозе. Выявляется гетерозиготность при помощи анализирующего скрещивания. Гетерозиготность, как правило, — следствие полового процесса, но может возникнуть в результате мутации. При гетерозиготности эффект вредных и летальных рецессивных аллелей подавляется присутствием соответствующего доминантного аллеля и проявляется только при переходе этого гена в гомозиготное состояние. Поэтому гетерозиготность широко распространена в природных популяциях и является, по-видимому, одной из причин гетерозиса. Маскирующее действие доминантных аллелей при гетерозиготности — причина сохранения и распространения в популяции вредных рецессивных аллелей (т. н. гетерозиготное носительство). Их выявление (например, путём испытания производителей по потомству) осуществляется при любой племенной и селекционной работе, а также при составлении медико-генетических прогнозов.
Своими словами, можно сказать так, что в разведенческой практике гомозиготное состояние генов называется «правильным». Если обе аллели, контролирующие какую-либо характеристику одинаковы, то животное называется гомозиготным, и в разведении по наследству будет передавать именно эту характеристику. Если одна аллель доминантная, а другая рецессивная, то животное называется гетерозиготным, и внешне будет демонстрировать доминантную характеристику, а по наследству передавать либо доминантную характеристику, либо рецессивную.

Любой живой организм, имеет участок молекул ДНК (дезоксирибонуклеиновой кислоты), называемых хромосомы. При размножении половые клетки осуществляют копирование наследственной информации их носителями (генами), составляющими участок хромосом, которые имеют форму спирали и расположены внутри клеток. Гены, расположенные в одних и тех же локусах (строго определённых положениях в хромосоме) гомологичных хромосом и определяющих развитие какого-либо признака, называются аллельными. В диплоидном (двойном, соматическом) наборе две гомологические (одинаковые) хромосомы и соответственно, два гена как раз и несут развитие этих различных признаков. При преобладании одного признака над другим называется доминированием, а гены доминантные. Признак, проявление которого подавляется, называется рецессивным. Гомозиготностью аллели называется присутствие в ней двух одинаковых генов (носителей наследственной информации): или двух доминантных или двух рецессивных. Гетерозиготностью аллели называется присутствие в ней двух разных генов, Т.е. один из них доминантный, а другой рецессивный. Аллели, которые в гетерозиготе дают то же проявление какого — либо наследственного признака, что и в гомозиготе, называются доминантными. Аллели, которые проявляют свое действие только в гомозиготе, а в гетерозиготе незаметны, либо подавляются действием другого доминантного аллеля, называются рецессивными.

Принципы гомозиготности, гетерозиготности и других основ генетики впервые сформулировал основоположник генетики аббат Грегор Мендель в виде трёх своих законах наследования.

Первый закон Менделя: «Потомство от скрещивания особей, гомозиготных по разным аллеям одного и того же гена, единообразно по фенотипу и гетерозиготно по генотипу».

Второй закон Менделя: «При скрещивании гетерозиготных форм в потомстве наблюдается закономерное расщеплении в соотношении 3:1 по фенотипу и 1:2:1 по генотипу».

Третий закон Менделя: «Аллели каждого гена наследуются независимо от комплекции животного.
С точки зрения современной генетики его гипотезы выглядят так:

1. Каждый признак данного организма контролируется парой аллелей. Особь, получившая от обоих родителей одинаковые аллели, называется гомозиготной и обозначается двумя одинаковыми буквами (например, АА или аа), а если получает разные — то гетерозиготной (Аа).

2. Если организм содержит два различных аллеля данного признака, то один из них (доминантный) может проявляться, полностью подавляя проявление другого (рецессивного). (Принцип доминирования или единообразия потомков первого поколения). В виде примера возьмем моногибридное (только по признаку окраса) скрещивание у кокеров. Предположим, что оба родителя гомозиготны по окрасу, таким образом, черная собака будет иметь генотип, который мы для примера обозначим АА, а палевая аа. Обе особи будут продуцировать только один тип гамет: черная только А, а палевая только а. Независимо от того, сколько щенков родится в таком помете, все они будут черными, поскольку черный окрас доминирует. С другой стороны, все они будут носителями палевого гена, поскольку их генотип Аа. Для тех, кто не слишком разобрался, заметим, что рецессивный признак (в данном случае палевый окрас) проявляется только в гомозиготном состоянии!

3. Каждая половая клетка (гамета) получает по одному из каждой пары аллелей. (Принцип расщепления). Если мы скрестим потомков первого поколения или двух любых кокеров с генотипом Аа, в потомстве второго поколения будет наблюдаться расщепление: Аа + аа = АА, 2Аа, аа. Таким образом, расщепление по фенотипу будет выглядеть как 3:1, а по генотипу как 1:2:1. То есть при вязке двух черных гетерозиготных кокеров у нас может быть 1/4 вероятности рождения черных гомозиготных собак (АА), 2/4 вероятности рождения черных гетерозигот (Аа) и 1/4 вероятности рождения палевых (аа). В жизни все не так просто. Иногда от двух черных гетерозиготных кокеров может получиться б палевых щенков, а могут быть все черные. Мы просто просчитываем вероятность появления данного признака у щенков, а уж проявится ли он, зависит от того, какие аллели попали в оплодотворенные яйцеклетки.

4. При образовании гамет в каждую из них может попасть любой аллель из одной пары вместе с любым другим из другой пары. (Принцип независимого распределения). Очень многие признаки наследуются независимо, например, если цвет глаз может зависеть от общего окраса собаки, то практически никак не связан с длиной ушей. Если взять дигибридное скрещивание (по двум разным признакам), то мы можем увидеть следующее соотношение: 9: 3: 3: 1

5. Каждый аллель передается из поколения в поколение как дискретная неизменяющаяся единица.

б. Каждый организм наследует по одному аллелю (для каждого признака) от каждой из родительских особей.

Доминантность
Если для специфического гена две аллели, которые несет особь, будут одинаковы, то какая из них будет преобладать? Поскольку мутация аллелей часто приводит к потере функций (пустые аллели), особь, несущая только одну такую аллель, будет также иметь «нормальную» (дикий тип) аллель для того же самого гена; единственной нормальной копии часто будет достаточно, чтобы поддерживать нормальную функцию. Для аналогии, позвольте нам вообразить, что мы строим кирпичную стену, но один из наших двух обычных подрядчиков бастует. Пока оставшийся поставщик может снабжать нас достаточным количеством кирпичей, мы можем продолжать строить нашу стену. Генетики называют это явление, когда один из двух генов все еще может обеспечивать нормальную функцию, доминантностью. Нормальная аллель, как определяют, является доминантной по отношению к неправильной аллели. (Иначе можно сказать, что неправильная аллель является рецессивной по отношению к нормальной.)

Когда кто-то говорит о генетической ненормальности, «несомой» особью или линией, подразумевается, что имеется мутированный ген, который является рецессивным. Если мы не имеем сложного тестирования на непосредственное обнаружение этого гена, то мы не сможем визуально определить курьера (носителя) от особи с двумя нормальными копиями (аллелями) гена. К сожалению, испытывая недостаток в подобных тестированиях, курьер не будет своевременно обнаружен и неизбежно передаст аллель мутации части своего потомства. Каждая особь может быть подобно «укомплектована» и нести несколько таких темных тайн в своем генетическом багаже (генотип). Однако, все мы имеем тысячи различных генов для множества различных функций, и пока эти отклонения редки, вероятность того, что две неродственные особи, несущие одинаковую «ненормальность», встретятся для воспроизводства, очень низка.

Иногда особи с единственной нормальной аллелью могут иметь «промежуточный» фенотип. Например, у Бассенджи, несущей одну аллель для дефицита пируваткиназы (недостаток фермента, ведущий к слабо выраженной анемии), средняя продолжительность жизни красной кровяной клетки — 12 дней. Это промежуточный тип между нормальным циклом в 16 дней и циклом в 6,5 дней у собаки с двумя неправильными аллелями. Хотя это часто называют неполной доминантностью, в этом случае предпочтительнее было бы сказать, что нет вообще никакой доминантности.

Пронесем нашу аналогию с кирпичной стеной немного дальше. Что, если единственной поставки кирпичей будет недостаточно? Мы останемся со стеной, которая будет ниже (или короче) предполагаемой. Будет ли это иметь значение? Это зависит от того, что мы хотим сделать со «стеной» и, возможно, от генетических факторов. Результат, возможно, будет не одинаков для двух людей, которые строили эту стену. (Низкая стена может не пропустить паводок, но не наводнение!) Если есть возможность, что особь, несущая только одну копию неправильной аллели, проявит её неправильным фенотипом, то эта аллель должна быть расценена как доминантная. Её отказ всегда делать так определяется термином пенетрантность.

Третья возможность состоит в том, что один из подрядчиков поставляет нам нестандартные кирпичи. Не понимая этого, мы продолжаем работу — в итоге стена падает. Мы могли бы сказать, что дефектные кирпичи являются преобладающим (доминантным) фактором. Успех в понимании нескольких доминантных генетических заболеваний у человека предполагает, что это — разумная аналогия. Большинство доминирующих мутаций затрагивают белки, которые являются компонентами больших макромолекулярных комплексов. Эти мутации приводят к изменению белков, которые не могут должным образом взаимодействовать с другими компонентами, ведя к сбою всего комплекса (дефектные кирпичи — упавшая стена). Другие находятся в регулирующих последовательностях, смежных с генами, и заставляют ген быть расшифрованным в несоответствующем времени и месте.

Доминантные мутации могут сохраняться в популяциях, если проблемы, которые они вызывают, являются тонкими и не всегда выраженными, или проявляются на зрелой стадии жизни, после того как затронутая особь участвовала в воспроизводстве.

Рецессивный ген (т.е. признак, им определяемый) может не проявляться у одного или многих поколений пока не встретятся два идентичных рецессивных гена от каждого из родителей (внезапное проявление такого признака у потомков не следует путать с мутацией).
Собаки, имеющие лишь один рецессивный ген — определитель какого-либо признака, не проявят это признак, так как действие рецессивного гена будет замаскировано проявлением влияния парного ему доминантного гена. Такие собаки (носители рецессивного гена) могут быть опасны для породы, если этот ген определяет появление нежелательного признака, потому что будет передавать его своим потомкам, а те далее и он таким образом сохранится в породе. Если случайно или необдуманно свести в пару двух носителей такого гена они дадут часть потомства с нежелательными признаками.

Присутствие доминантного гена всегда явно и внешне проявляется соответствующим признаком. Поэтому доминантные гены, несущие нежелательный признак, представляют для селекционера значительно меньшую опасность, чем рецессивные, так как их присутствие всегда проявляется, даже если доминантный ген «работает» без партнера (Аа).
Но, видимо, для того, чтобы усложнить дело, не все гены являются абсолютно доминантными или рецессивными. Другими словами, некоторые более доминантны, чем другие и наоборот. Например, некоторые факторы, определяющие окрас шерсти могут быть доминантными, но все же внешне не проявляться, если их не поддержат другие гены, иногда даже рецессивные.
Спаривания не всегда дают соотношения в точном соответствии с ожидаемыми средними результатами и для получения достоверного результата от данного спаривания нужно произвести большой помет или большое число потомков в нескольких пометах.
Некоторые внешние признаки могут быть «доминантными» в одних породах и «рецессивными» в других. Другие признаки могут быть обусловлены множественными генами или полугенами, не являющимися простыми доминантами или рецессивами по Менделю.

Диагностика генетических нарушений
Диагностика генетических нарушений как учение о распознавании и обозначении генетических болезней складывается в основном из двух частей
выявление патологических признаков, то есть фенотипических отклонений у отдельных особей; доказательство наследуемости обнаруженных отклонений. Под понятием «оценка генетического здоровья» подразумевают проверку фенотипически нормальной особи на предмет выявления неблагоприятных рецессивных аллелей (тест на гетерозиготность). Наряду с генетическими методами применяют и методы, исключающие влияние среды. Рутинные методы исследования: бонитировка, лабораторная диагностика, методы патологической анатомии, гистологии и патофизиологии. Специальные методы, имеющие большое значение — цитогенетические и иммуногенетические методы. Метод культуры клеток способствовал серьезным успехам в диагностике и генетическом анализе наследственных заболеваний. За короткий срок этот метод позволил изучить около 20 генетических дефектов, встречающихся у человека (Рерабек и Рерабек, 1960; Нью,1956; Рапопорт,1969) с его помощью можно во многих случаях отдеференцировать гомозигот от гетерозигот при рецессивном типе наследования
Иммуногенетические методы применяются для изучения групп крови, белков сыворотки крови и молока, белков семенной жидкости, типов гемоглобина и др. Открытие большого числа белковых локусов с множественными аллелями привело к «эпохе ренессанса» в менделевской генетике. Белковые локусы используются:
для установления генотипа отдельных животных
при исследовании некоторых специфических дефектов (иммунопарез)
для изучения сцепления (гены маркеры)
для анализа генной несовместимости
для выявления мозаицизма и химеризма
Наличие дефекта с момента рождения, пороки, всплывающие в определенных линиях и питомниках, присутствие в каждом аномальном случае общего предка — не означает наследственности данного состояния и генетической природы. При выявлении патологии необходимо получить доказательство ее генетичекой обусловленности и определить тип наследования. Необходима также статистическая обработка материала. Генетико-статистическому анализу подвергают две группы данных:
Популяционные данные — частота врожденных аномалий в совокупной популяции, частота врожденных аномалий в субпопуляции
Семейные данные — доказательство генетической обусловленности и определение типа наследования, коэффициенты инбридинга и степень концентрации предков.
При изучении генетической обусловленности и типа наследования сравнивают наблюдаемые численные соотношения нормального и дефектного фенотипов в потомстве группы родителей одинакового (теоретически) генотипа с вычисленными на основании биноминальных вероятностей соотношениями расщепления согласно законам Менделя. Для получения статистического материала необходимо вычислить частоту пораженных и здоровых особей среди кровных родственников пробанда на протяжении нескольких поколений, определить численное соотношение путем комбинации отдельных данных, объединить данные о небольших семьях с соответственно одинаковыми родительскими генотипами. Так же важны сведения о размере помета и пола щенков (для оценки возможности сцепленной или ограниченной полом наследственности).
При этом необходимо провести сбор данных по отбору:
Комплексный отбор — случайная выборка родителей (применяется при проверке доминантного признака)
Целенаправленный отбор — все собаки с «плохим» признаком в популяции после тщательного ее обследования
Индивидуальный отбор — вероятность проявления аномалии настолько низка, что он встречается у одного щенка из помета
Множественный отбор — промежуточный между целенаправленным и индивидуальным, когда в помете имеется больше одного пораженного щенка, но не все они являются пробандами.
Все способы, кроме первого исключают вязки собак с генотипом Nn, не дающих в пометах аномалии. Существуют различные способы коррекции данных: Н.Т.Дж. Бейли(79), Л.Л.Кавайи-Сфорца и В.Ф.Бодме и К.Стер.
Генетическая характеристика популяции начинается с оценки распространенности изучаемого заболевания или признака. По этим данным определяются частоты генов и соответствующих генотипов в популяции. Популяционный метод позволяет изучать распространение отдельных генов или хромосомных аномалий в популяциях. Для анализа генетической структуры популяции необходимо обследовать большую группу особей, которая должна быть представительной, позволяющей судить о популяции в целом. Этот метод информативен при изучении различных форм наследственной патологии. Основным методом при определении типа наследственных аномалий является анализ родословных в пределах родственных групп особей, в которых фиксировались случаи изучаемого заболевания по следующему алгоритму:
Определение происхождения аномальных животных по племенным карточкам;
Составление родословных на аномальных особей с целью поиска общих предков;
Анализ типа наследования аномалии;
Проведение генетико-статистических расчётов на степень случайности появления аномалии и частоты встречаемости в популяции.
Генеалогический метод анализа родословных занимает ведущее место в генетических исследованиях медленно размножающихся животных и человека. По исследованию фенотипов нескольких поколений родственников можно установить характер наследования признака и генотипы отдельных членов семей, определить вероятность проявления и степень риска для потомства по тому или иному заболеванию.
При определении наследственного заболевания обращают внимание на типичные признаки генетической предрасположенности. Патология возникает чаще всего в группе родственных животных, чем в целой популяции. Это помогает отличить врожденное заболевание от породной предрасположенности. Однако анализ родословной показывает, что есть семейные случаи заболевания, что, предполагает наличие определенного гена или группы генов, ответственных за это. Во-вторых, наследственный дефект часто затрагивает одну и туже анатомическую область в группе родственных животных. В-третьих, при инбридинге случаев заболевания становится больше. В-четвертых, наследственные заболевания часто проявляются рано, и нередко имеют постоянный возраст начала заболевания.
Генетические заболевания обычно поражают несколько животных в помете, в отличие от интоксикации и инфекционных заболеваний, которые поражают весь помет. Врожденные заболевания очень разнообразны, от относительно благоприятных до неизменно летальных. Диагностика их обычно базируется на сборе анамнеза, клинических признаках, анамнезе заболевания у родственных животных, результатах анализирующего скрещивания и определенных диагностических исследованиях.
Значительное число моногенных заболеваний наследуется по рецессивному типу. Это значит, что при аутосомной локализации соответствующего гена болеют только гомозиготные носители мутаций. Мутации чаще всего рецессивные и проявляются только в гомозиготном состоянии. Гетерозиготы клинически здоровы, но с равной вероятностью передают своим детям мутантный или нормальный вариант гена. Таким образом, на протяжении длительного времени мутация в скрытом виде может передаваться из поколения в поколение. При аутосомно-рецессивном типе наследования в родословных тяжелобольных, которые либо не доживают до репродуктивного возраста, либо имею резко сниженные потенции к размножению, редко удается выявить больных родственников, особенно по восходящей линии. Исключение составляют семьи с повышенным уровнем инбридинга.
Собаки, имеющие лишь один рецессивный ген — определитель какого-либо признака, не проявят это признак, так как действие рецессивного гена будет замаскировано проявлением влияния парного ему доминантного гена. Такие собаки (носители рецессивного гена) могут быть опасны для породы, если этот ген определяет появление нежелательного признака, потому что будет передавать его своим потомкам. Если случайно или обдуманно свести в пару двух носителей такого гена они дадут часть потомства с нежелательными признаками.
Ожидаемое соотношение расщепления потомков по тому или иному признаку приблизительно оправдывается при помете не менее 16 щенков. Для помета обычного размера — 6-8 щенков — можно говорить лишь о большей или меньшей вероятности проявления признака, определяемого рецессивным геном, для потомков определенной пары производителей с известным генотипом.
Отбор рецессивных аномалий может осуществляться двумя способами. Первый из них — исключать из разведения собак с проявлениями аномалий, т. е. гомозигот. Встречаемость аномалии при таком отборе в первых поколениях снижается резко, а затем более медленно, сохраняясь на относительно низком уровне. Причина неполного устранения некоторых аномалий даже в течение длительного и упорного отбора состоит, во-первых, в гораздо более медленном сокращении носителей рецессивных генов, чем гомозигот. Во-вторых, в том, что при мутациях, незначительно отклоняющихся от нормы, заводчики не всегда выбраковывают аномальных собак и носителей.
При аутосомно-рецессивном типе наследования:
Признак может передаваться через поколение даже при достаточном числе потомков
Признак может проявиться у детей в (видимом) отсутствие его у родителей. Обнаруживается тогда в 25% случаев у детей
Признак наследуется всеми детьми, если оба родителя больны
Признак в 50% развивается у детей, если один из родителей болен
Потомки мужского и женского пола наследуют этот признак одинаково
Таким образом, абсолютно полное устранение аномалии принципиально возможно при условии выявления всех носителей. Схема такого выявления: гетерозигот по рецессивным мутациям можно в некоторых случаях обнаружить лабораторными методами исследований. Однако, для генетического выявления гетерозигот-носителей, необходимо проведение анализирующих скрещиваний — вязок подозреваемой, как собака-носитель с гомозиготной аномальной (если аномалия незначительно затрагивает организм) или с уже установленным ранее носителем. Если в результате таких скрещиваний рождаются среди прочих и аномальные щенки, испытываемый производитель однозначно определяется как носитель. Однако если таких щенков не выявлено, то однозначного вывода сделать на ограниченной выборке полученных щенков нельзя. Вероятность того, что такой производитель является носителем, уменьшается с расширением выборки — увеличением числа рожденных от вязок с ним нормальных щенков.
На кафедре ветеринарной академии Санкт-Петербурга проведен анализ структуры генетического груза у собак и установлено, что наибольший удельный вес — 46,7% составляют аномалии, наследуемые по моногенному аутосомно-рецессивному типу; аномалии с полным доминированием составили 14,5%; как неполнодоминантные признаки проявились 2,7% аномалий; 6,5% аномалий наследуются как сцепленный с полом, 11,3% наследственных признаков с полигенным типом наследования и 18%3% всего спектра наследственных аномалий тип наследования не установлен. Общее число аномалий и болезней, имеющих наследственную основу, у собак составило 186 наименований.
Наряду с традиционными методами селекционно-генетической профилактики актуальным является использование фенотипических маркеров мутаций.
Генетический мониторинг болезней является прямым методом оценки наследственных болезней у потомков непораженных родителей. «Сторожевыми» фенотипами могут быть: волчья пасть, заячья губа, паховые и пупочные грыжи, водянка новорожденных, судороги у новорожденных щенков. В моногенных зафиксированных болезнях существует возможность опознавать действительного носителя через связанного с ним гена-маркера.
Существующее породное разнообразие собак представляет уникальную возможность изучения генетического контроля многочисленных морфологических признаков, различное сочетание которых определяет породные стандарты. Иллюстрацией данного положения могут служить две из ныне существующих пород домашней собаки, контрастно различающиеся между собой хотя бы по таким морфологическим признакам, как рост и вес. Это порода английский мастиф, с одной стороны, у представителей которой высота в холке достигает 80 см а вес тела превышает 100 кг, и порода чи хуа хуа, 30 см и 2,5 кг.
Процесс доместикации включает отбор животных по их наиболее выдающимся признакам, с точки зрения человека. Со временем, когда собаку стали содержать, как компаньона и за ее эстетический вид, направление селекции изменилось на получение пород, плохо приспособленных к выживанию в природе, но хорошо приспособленных к человеческому окружению. Существует мнение, что «дворняжки» более здоровые, чем чистопородные собаки. Действительно, наследственные заболевания возможно чаще встречаются у домашних животных, чем у диких..
«Одна из важнейших целей — разработка методов объединения задач совершенствования животных по селекционируемым признакам и сохранения на необходимом уровне их фитнесса — в противоположность опасному для биологического благополучия доместицированных организмов одностороннему отбору на максимальное (подчас утрированное, чрезмерное) развитие специфических породных черт»- (Lerner, 1958).
Эффективность селекции, на наш взгляд, должна заключаться в диагностике аномалии у пораженных животных и выявлении носителей, имеющих дефектную наследственность, но с нормальным фенотипом. Лечение пораженных животных с целью коррекции их фенотипов может рассматриваться не только как мероприятие для улучшения эстетического вида животных (олигодонтия), но и предупреждение раковых заболеваний (крипторхизм), сохранение биологической, полноценной активности (дисплазия тазобедренных суставов) и стабилизация здоровья вообще. В связи с этим необходима селекция против аномалий при совместной деятельности кинологии и ветеринарии.
Возможность тестирования ДНК на различные болезни собак очень новая вещь в кинологии, знание этого может предупредить заводчиков, на какие генетические заболевания следует обратить особое внимание при подборе пар производителей. Хорошее генетическое здоровье очень важно, потому что это определяет биологически полноценную жизнь собаки. В книге доктора Паджетта «Контроль наследственных болезней у собак» показано, как читать генетическую родословную на предмет какой-либо аномалии. Генетические родословные покажут, является ли эта болезнь связанной с полом, либо наследование идёт через простой доминантный ген, либо через рецессивный, либо болезнь полигенная по происхождению. Непреднамеренные генетические ошибки, будут время от времени происходить вне зависимости от тщательности работы заводчика. Используя генетические родословные как средство в обмене знаниями, можно разбавить «вредные» гены до такой степени, чтобы остановить их от проявления до того времени, когда будет найден маркер ДНК для тестирования их передачи. Поскольку селекционный процесс предполагает улучшение популяции в следующем поколении, то учитываются не фенотипические характеристики непосредственных элементов селекционной стратегии (особей или пар скрещиваемых особей), а фенотипические характеристики их потомков. Именно в связи с этим обстоятельством и возникает необходимость описания наследования признака для селекционных задач. Пара скрещивающихся особей отличаются от остальных таких же особей своим происхождением и фенотипическими характеристиками признака, как их самих, так и их родственников. На основе этих данных, если есть готовое описание наследования, можно получить ожидаемые характеристики потомства и, следовательно, оценки селекционных ценностей каждого из элементов селекционной стратегии. При любых мерах, направленных против какой-либо генетической аномалии, первым делом нужно определить относительную важность «плохого» признака по сравнению с другими признаками. Если нежелательный признак имеет высокую частоту наследуемости и наносит собаке серьёзный ущерб, следует действовать иначе, чем в случае редкого проявления признака или его второстепенного значения. Великолепная по породному типу собака, передающая порочный окрас, остаётся гораздо более ценным производителем, чем посредственная, но с правильным окрасом.

Гомозиготные и гетерозиготные организмы

  • Действие шума на организм человека

    Источниками шума на предприятиях мясной и молочной отраслей пищевой промышленности являются куттеры, фаршемешалки, мешалки, волчки, сепараторы, пастеризаторы, центрифуги, ленточные и дисковые пилы, дробилки, желоба, галтовочные барабаны, вентиляционные установки и др. Шум, возникающий при работе производственного…
    (Безопасность жизнедеятельности)

  • Действие вибрации на организм человека

    Источниками вибрации на предприятиях мясной и молочной промышленности являются центрифуги, ручные пилы, дробилки, компрессоры, насосы, электродвигатели, редукторы и др. При изучении действия вибрации на организм человека нужно учитывать, что колебательные процессы присущи живому организму прежде всего…
    (Безопасность жизнедеятельности)

  • Действие электростатического поля на организм человека и его нормирование

    Электростатические заряды, возникающие на поверхностях некоторых материалов, как жидких, так и твердых, вследствие электризации образуют электростатическое поле (ЭСП). Электростатические заряды возникают при трении двух диэлектрических или диэлектрического и проводящего материалов, если последний изолирован…
    (Безопасность жизнедеятельности)

  • Действие инфракрасных излучений на организм человека и их нормирование

    Инфракрасное излучение (ИКИ) – часть спектра электромагнитных излучений с длиной волны от 780 нм до 1000 мкм, энергия которых при поглощении веществом вызывает тепловой эффект. В зависимости от биологического действия ИКИ диапазон спектра по длине волны подразделяется на три области: ИК-А – от 780 до…
    (Безопасность жизнедеятельности)

  • Понятие, признаки и структура нормы права

    Правовая наука выработала ряд основополагающих общих правовых понятий – категорий, имеющих методологическое значение для отраслевых правовых наук, для юридической практики. В них отражаются наиболее общие существенные черты, свойственные системе юридических явлений вообще, отдельным историческим ступеням…
    (Основы права)

  • Правовая наука выработала ряд основополагающих общих правовых понятий — категорий, имеющих методологическое значение для отраслевых правовых наук, для юридической практики. В них отражаются наиболее общие существенные черты, свойственные системе юридических явлений вообще, отдельным историческим ступеням…
    (ОБЩЕСТВОЗНАНИЕ. ОСНОВЫ ГОСУДАРСТВА И ПРАВА)
  • Норма реакции, модификационная изменчивость и проблема обратной транскрипции

    Необходимо подчеркнуть, что наследственный аппарат сам по себе кодирует только синтез специфических белковых молекул, а отнюдь не признаки целого сформированного фенотипа (т. е. конкретные особенности строения и функционирования тех или иных органов), как это иногда упрощенно представляют. Синтез специфических…
    (ЭВОЛЮЦИЯ ЖИЗНИ)

  • Признаки корпоративных правовых норм

    Данные нормы можно подразделить на две группы. А. Общие признаки. Поскольку корпоративные правовые нормы являются разновидностью норм социальных, им присущи признаки, общие для всех социальных норм без исключения. 1. Корпоративные нормы регулируют не отдельный случай или конкретное общественное…
    (КОРПОРАТИВНОЕ ПРАВО)

Здравствуйте!
Скажите пожалуйста, чем отличаются эти три варианта в заключении генетического анализа:
Мутация выявлена в гетерозиготном состоянии.
Мутация выявлена в гомозиготном состоянии.
Мутация выявлена в компаунд –гетерозиготном состоянии.?

Как понять результат:
Генетический анализ мутаций гена MEFV 16-ой хромосомы:
Обнаружена одна мутация в гетерозиготном состоянии.

Генетический анализ гена SAA1:
Результат: выявлено наличие изоформы β/β.

Как отличить носительство от болезни? Заранее благодарю!

Уважаемая Лилит! Мутация в гетерозиготном состоянии — обнаружение одной патологической (мутантной) и одной нормальной аллели в гене. Мутация в гомозиготном состоянии — обнаружение двух патологических идентичных (мутантных) аллелей в гене. Мутация в компаунд-гетерозиготном состоянии — наличие двух разных мутаций в одном гене, которые получены от обоих родителей (одна патологическая аллель от матери и другая (не идентичная) патологическая аллель — от отца). Периодическая болезнь относится к аутосомно-рецессивным наследственным заболеваниям, которые фенотипически (клинически, симптоматически) проявляются при выявлении мутаций генов в гомозиготном или в компаунд-гетерозиготном состояниях (хотя имеются случаи компаунд-гетерозиготного носительства без развития заболевания — это мутации P369S, M694I, F479L и R42W). В случае выявления гетерозиготной мутации, как в Вашем случае, состояние расценивается как носительство (не болезнь), то есть нет никаких проявлений периодической болезни. Наличие изоформы b\b гена SAA1 является наиболее распространенным в человеческой популяции, предотвращающим развитие АА-амилоидоза, то есть выявлен нормальный генотип.

Генетика – наука, которая изучает гены, механизмы наследования признаков и изменчивость организмов. В процессе размножения ряд признаков передается потомству. Было замечено еще в девятнадцатом столетии, что живые организмы наследуют особенности своих родителей. Первым, кто описал эти закономерности, был Г.Мендель.

Наследственность – свойство отдельных особей передавать потомству свои признаки при помощи размножения (через половые и соматические клетки). Так сохраняются особенности организмов в ряде поколений. При передаче наследственной информации не происходит точное ее копирование, а всегда присутствует изменчивость.

Изменчивость – приобретение индивидуумами новых свойств или утрата старых. Это важное звено в процессе эволюции и адаптации живых существ. То, что в мире нет идентичных особей – это заслуга изменчивости.

Наследование признаков осуществляется с помощью элементарных единиц наследования – генов. Совокупность генов определяет генотип организма. Каждый ген несет в себе закодированную информацию и расположен в определенном месте ДНК.

Свойства генов

Гены обладают рядом специфических свойств:

  1. Разные признаки кодируются разными генами;
  2. Постоянство – при отсутствии мутирующего действия, наследственный материал передается в неизменном виде;
  3. Лабильность – способность поддаваться мутациям;
  4. Специфичность – ген несет в себе особую информацию;
  5. Плейотропия – одним геном кодируется несколько признаков;

Под действием условий внешней среды генотип дает разные фенотипы. Фенотип определяет степень влияния на организм окружающих условий.

Аллельные гены

Клетки нашего организма имеют диплоидный набор хромосом, они в свою очередь состоят из пары хроматид, разбитых на участки (гены). Разные формы одинаковых генов (например карие/голубые глаза), расположены в одних и тех же локусах гомологичных хромосом, носят название аллельных генов. В диплоидных клетках гены представлены двумя аллелями, один от отца, другой от матери.

Аллели делятся на доминантные и рецессивные. Доминантная аллель определят, какой признак будет выражен в фенотипе, а рецессивная – передается по наследству, но в гетерозиготном организме не проявляется.

Существуют аллели с частичной доминантностью, такое состояние называется кодоминантностью, в таком случае оба признака будут проявляться в фенотипе. Например, скрещивали цветы с красными и белыми соцветиями, в результате в следующем поколении получили красные, розовые и белые цветы (розовые соцветия и есть проявлением кодоминантности). Все аллели обозначают буквами латинского алфавита: большими – доминантные (АА, ВВ), маленькими – рецессивные (аа,bb).

Гомозиготы и гетерозиготы

Гомозигота – это организм, в котором аллели представлены только доминантными или рецессивными генами.

Гомозиготность означает наличие одинаковых аллелей в обеих хромосомах (АА, bb). В гомозиготных организмах они кодируют одни и те же признаки (например, белый цвет лепестков роз), в таком случае все потомство получит такой же генотип и фенотипические проявления.

Гетерозигота – это организм, в котором аллели имеют и доминантный, и рецессивный гены.

Гетерозиготность — наличие разных аллельных генов в гомологичных участках хромосом (Аа, Вb). Фенотип у гетерозиготных организмов всегда будет одинаков и определяется доминантным геном.

Например, А – карие глаза, а – голубые глаза, у особи с генотипом Аа будут карие глаза.

Для гетерозиготных форм характерно расщепление, когда при скрещивании двух гетерозиготных организмов в первом поколении мы получаем следующий результат: по фенотипу 3:1, по генотипу 1:2:1.

Примером может послужить наследование темных и светлых волос, если у обоих родителей они темные. А – доминантная аллель по признаку темных волос, а – рецессивная (светлые волосы).

Р: Аа х Аа

Г: А, а, А, а

F: АА:2Аа:аа

*Где Р – родители, Г – гаметы, F – потомство.

По данной схеме можно увидеть, что вероятность унаследовать от родителей доминантный признак (темные волосы) в три раза выше, чем рецессивный.

Дигетерозигота – гетерозиготная особь, которая несет две пары альтернативных признаков. Например, исследование наследования признаков Менделем с помощью семян гороха. Доминантными характеристиками были желтый цвет и гладкая поверхность семян, а рецессивными — зеленый цвет и шероховатая поверхность. В результате скрещивания получилось девять различных генотипов и четыре фенотипа.

Гемизигота – это организм с одним аллельным геном, даже если он рецессивный, фенотипически всегда будет проявляться. В норме они присутствуют в половых хромосомах.

Отличие гомозиготы и гетерозиготы (таблица)

Отличия гомозиготных организмов от гетерозиготных
Характеристика Гомозигота Гетерозигота
Аллели гомологичных хромосом Одинаковые Разные
Генотип AA, aa Aa
Фенотип определяется по признаку По рецессивному или доминатному По доминатному
Однообразие первого поколения + +
Расщепление Не происходит Со второго поколения
Проявление рецессивного гена Характерно Подавляется

Размножение, скрещивание гомозигот и гетерозигот ведет к образованию новых признаков, которые необходимы живым организмам для адаптации к переменчивым условиям внешней среды. Их свойства необходимы при выведении культур, пород с высокими качественными показателями.

Оцените, пожалуйста, статью. Мы старались:)

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *